<<678910>>
41.

Let the orthocentre and centroid of a triangle be  A ( -3,5) and B ( 3,3) respectively. If C is the circumcentre of this triangle, then the radius of  the circle having line segment AC as diameter , is


A) $\sqrt{10}$

B) $2\sqrt{10}$

C) $3\sqrt{\frac{5}{2}}$

D) $\frac{3\sqrt{5}}{2}$



42.

A straight line through a fixed point ( 2,3) intersects the coordinate axes at distinct  point P and Q, If O is the origin and the rectangle OPRQ is completed, then the locus of R is 


A) $3x+2y=6$

B) $2x+3y=xy$

C) $3x+2y=xy$

D) $3x+2y=6xy$



43.

Let $f( x)=x^{2}+\frac{1}{x^{2}}$ and  $g( x)=x^{}-\frac{1}{x^{'}}$ x $\in$ R - {-1,0,1}. If $h( x)=\frac{f( x)}{g( x)}$ , then the local minimum value of h(x) is


A) 3

B) -3

C) $-2\sqrt{2}$

D) $2\sqrt{2}$



44.

If the curves $y^{2}=6x,9x^{2}+by^{2}=16$  intersect each other at right angles, then the value of b is


A) 6

B) $\frac{7}{2}$

C) 4

D) $\frac{9}{2}$



45.

The sum of the coefficients of all odd degree terms in the expansion is

$(x+\sqrt{x^{3}-1})^{5}+(x-\sqrt{x^{3}-1} )^{5},(x>1)is$


A) -1

B) 0

C) 1

D) 2



<<678910>>